Single crystal silicon is a relatively active non-metallic element and an important component of crystal materials, and is at the forefront of the development of new materials. Its main uses are as semiconductor materials and solar photovoltaic power generation, heating [ 1 ], etc. Because solar energy has many advantages such as cleanness, environmental protection and convenience, solar energy utilization technology has made great progress in research and development, commercial production and market development in the past 30 years and has become one of the emerging industries with rapid and stable development in the world. Single crystal silicon can be used in the production and deep processing of single crystal products at diode level, rectifier device level, circuit level and solar cell level. Its subsequent products, integrated circuits and semiconductor separation devices, have been widely used in various fields and also occupy an important position in military electronic equipment [ 2 ]. With the rapid development of photovoltaic technology and miniature semiconductor inverter technology, solar cells produced by silicon single crystal can directly convert solar energy into light energy, realizing the beginning of the green energy revolution. The Beijing 2008 Olympic Games will present " Green Olympics" as an important display to the world, in which the use of monocrystalline silicon will be a very important part. At present, foreign solar photovoltaic power stations have reached the stage of theoretical maturity and are transiting to the stage of practical application. The utilization of solar silicon single crystal will be popularized all over the world, and the market demand is self - evident [ 2 ]. Specific introduction We can see the figure and function of " silicon" everywhere in our life. Crystalline silicon solar cells have formed the fastest industrialization in the past 15 years. Single crystal silicon is a single crystal of silicon. A crystal with a substantially complete lattice structure. Different directions have different properties and are a good semiconducting material. The purity requirement is 99.9999 %, even more than 99.9999999 %. It is used for manufacturing semiconductor devices, solar cells, etc. It is made by drawing high-purity polysilicon in a single crystal furnace. Purpose: Single crystal silicon has diamond crystal lattice, hard and brittle crystal, metallic luster, can conduct electricity, but its conductivity is not as good as that of metal, and increases with temperature, and it has semiconductor properties. Single crystal silicon is an important semiconductor material. Adding a small amount of group iiia elements into monocrystalline silicon to form a p - type semiconductor, and adding a small amount of group va elements to form an n - type, n - type and p - type semiconductor, can be made into a solar cell to convert radiant energy into electrical energy. Single crystal silicon is the raw material for manufacturing semiconductor silicon devices, and is used for manufacturing high-power rectifiers, high-power transistors, diodes, switching devices, etc. It is a promising material in developing energy. Single crystal silicon can be divided into Czochralski method ( CZ ), zone melting method ( FZ ) and epitaxial method according to different crystal growth methods. Czochralski method and zone melting method are used to grow monocrystalline silicon rods, while epitaxial method is used to grow monocrystalline silicon films. Single crystal silicon grown by Czochralski method is mainly used in semiconductor integrated circuits, diodes, epitaxial wafer substrates and solar cells.